Scala Json Parsing With Play-JSON
There are many JSON libraries for scala but here we are using play-json which is part of Play framework but also can be used independently.
I am using ammonite repl to try out the json parsing on console.
# load the libraries
load.ivy("com.typesafe.play" %% "play-json" % "2.4.0")
import play.libs.Json._
var rawJson = """ {"name": "John", "age": 20, "address": "#42 milky way", "tags" : [ "freshman", "scholar" ] } """
The first step is going from a JSON string to JsValue objects by parsing the json string. The JsValue tree can be parsed by using \ and \ where
- \ selects an element in a JsObject, returning a JsValue
- \ selects an element in the entire tree returning a Seq[JsValue]
Json.parse(rawJson) \ "name"
# convert from JsonValue to desired typing
(Json.parse(rawJson) \ "name").as[String]
(Json.parse(rawJson) \ "age").as[Int]
(Json.parse(rawJson) \ "age").asOpt[Int]
(Json.parse(rawJson) \ "name" \ “address” ).as[String]
# get the first tag
(Json.parse(rawJson) \ "tags")(0).as[String]
# if this was an array of people information then we can take each of the name as
(json \\ "name").map(_.as[String])
(Json.parse(rawJson) \ "name") match {
case JsDefined(name) => println(name)
case error:JsUndefined => println(error)
case _ => println("Invalid type")
}
If we are unsure about the content of JsValue then we can use asOpt which will return a None if deserializing causes and exception.
(Json.parse(rawJson) \ "name").asOpt[String]
If we want a boolean then we can use the validate method which returns JsSuccess and JsError Better to use the validate method to check the parsed json
(Json.parse(rawJson) \ "name").validate[String] match {
case s: JsSuccess[String] => println("Name: " + s.get)
case e: JsError => println("Errors: " + JsError.toJson(e).toString())
}
Convert the JSON structure to scala data model To read from json we need to define a Reads[T] object for each class which defines how we read each incoming json object for the class. Reads[T] and Writes[T] objects have to be defined to read and write from json object. If the format for both are same then instead we can use the Format[T] object
case class Student (name: String, age: Int)
implicit val student : Reads[Student] = (
(JsPath \\ "name").read[String] and
(JsPath \\ "age").read[Int]
)(Student)
val person = Json.parse(rawJson).as[Student]
studentsObj.name
studentsObj.age
#Convert to a list of students
rawJson = """ [ {"name": "John", "age": 22 }, {"name": "Alice", "age": 20 } ] """
val people = Json.parse(rawJson).as[List[Students]]
#names of students
people.map(_.name)
Examples of reading some other type of data structures
rawJson = """ {"school": "public school" ,"students": [ {"name": "John", "age": 22 }, {"name": "Alice", "age": 20 } ] } """
val json = (Json.parse(rawJson) \ "students")
val nameReads: Reads[List[Students]] = (JsPath \ "students").read[List[Students]]
val nameResult: JsResult[List[Students]] = json.validate[List[Students]](nameReads)
val parseResult = (Json.parse(rawJson) \ "students").read[List[Students]]
val people = (Json.parse(rawJson) \ "students").as[List[Students]]
Handling null values
implicit val student : Reads[Student] = (
(JsPath \\ "name").readNullable[String] and
(JsPath \\ "age").readNullable[Int]
)(Student)
With readNullable we get an Option[T] object which means that field itself is optional
Handling missing values
implicit val student : Reads[Student] = (
(JsPath \\ "name").read( Reads.optionNoError[String] ) and
(JsPath \\ "age").read[Reads.optionNoError[Int]]
)(Student)
This is cause error if name and age are missing in the json data field
Handling validation
The read and readNullable have an implicit parameter which can be used for validation with constraints like email, maxLength, filter, pattern and more …
(JsPath \\ "name").readNullable[String](minLength[String](10)) and
(JsPath \\ "email").read[String](email)
https://www.playframework.com/documentation/2.4.x/api/scala/index.html#play.api.libs.json.ConstraintReads
Reference:
- https://www.playframework.com/documentation/2.5.x/ScalaJson